42 research outputs found

    Learning Independent Program and Architecture Representations for Generalizable Performance Modeling

    Full text link
    This paper proposes PerfVec, a novel deep learning-based performance modeling framework that learns high-dimensional, independent/orthogonal program and microarchitecture representations. Once learned, a program representation can be used to predict its performance on any microarchitecture, and likewise, a microarchitecture representation can be applied in the performance prediction of any program. Additionally, PerfVec yields a foundation model that captures the performance essence of instructions, which can be directly used by developers in numerous performance modeling related tasks without incurring its training cost. The evaluation demonstrates that PerfVec is more general, efficient, and accurate than previous approaches

    Molecular and morphological evidence for the identity of two nominal species of Astegopteryx (Hemiptera, Aphididae, Hormaphidinae)

    Get PDF
    The morphology of many insect species is usually influenced by environmental factors and therefore high phenotypic variation exists even within a species. This causes difficulty and uncertainty in species taxonomy, which can be remedied by using molecular data and integrative taxonomy. Astegopteryx bambusae and A. bambucifoliae are currently regarded as two closely related aphid species with similar bamboo hosts and overlapping distributions in the oriental region. However, in practice it is hard to distinguish between them. By incorporating molecular data from four mitochondrial and nuclear genes as well as morphological information from an extensive collection of live specimens, the present study indicates that A. bambucifoliae is a junior synonym of A. bambusae. The data also indicate that large-scale geographic patterns of population differentiation may exist within this species

    Spatial Patterns and Determinants of the Diversity of Hemipteran Insects in the Qinghai-Tibetan Plateau

    Get PDF
    Large-scale patterns of species richness is an important issue in biogeography and ecology. The Qinghai-Tibetan Plateau (QTP) is a biodiversity hotspot in the world, which has an important status in the zoogeographical realms. Here, we analyzed the diversity patterns of Hemipteran insects in the QTP, and tested whether the patterns can be jointly explained by modern environmental as well as historical factors. A comprehensive geographic distribution dataset consisting of 1,166 Hemipteran species, which belong to 510 genera and 53 families, was compiled and used in our analyses. Patterns of richness were mapped into a grid-based map with a spatial resolution of 0.5° × 0.5°. An unbalanced diversity pattern of the Hemipteran insects in the QTP was presented, with more species in the eastern and southern parts of the plateau, while few species in the northern and main surface of the plateau. The northwestern Sichuan, the southern Gansu, the southeastern Tibet, the northwestern Yunnan and the eastern Qinghai were identified as diversity hotspots of species richness. Further analyses based on General linear models and Random Forest indicated that the diversity patterns of Hemipteran insects were influenced by both contemporary environmental factors and historical factors (e.g., habitat heterogeneity, climate stability, energy availability). Specifically, the species richness patterns of all Hemipteran insects in the QTP have been mainly affected by elevation range, temperature annual range, min temperature of coldest month, mean temperature of coldest quarter and the temperature change since the Last Glacial Maximum. In contrast, the water-related variables have relatively small effects on species richness. In addition, although habitat heterogeneity was indicated the most important factor for different suborders of Hemiptera, the climate stability was another dominate factor for Heteroptera and Auchenorrhyncha, while Sternorrhyncha was more affected by historical climate change

    High energy Millihertz quasi-periodic oscillations in 1A 0535+262 with Insight-HXMT challenge current models

    Get PDF
    We studied the millihertz quasi-periodic oscillation (mHz QPO) in the 2020 outburst of the Be/X-ray binary 1A 0535+262 using Insight-HXMT data over a broad energy band. The mHz QPO is detected in the 27-120 keV energy band. The QPO centroid frequency is correlated with the source flux, and evolves in the 35-95 mHz range during the outburst. The QPO is most significant in the 50-65 keV band, with a significance of ~ 8 sigma, but is hardly detectable (<2 sigma) in the lowest (1-27 keV) and highest (>120 keV) energy bands. Notably, the detection of mHz QPO above 80 keV is the highest energy at which mHz QPOs have been detected so far. The fractional rms of the mHz QPO first increases and then decreases with energy, reaching the maximum amplitude at 50-65 keV. In addition, at the peak of the outburst, the mHz QPO shows a double-peak structure, with the difference between the two peaks being constant at ~0.02 Hz, twice the spin frequency of the neutron star in this system. We discuss different scenarios explaining the generation of the mHz QPO, including the beat frequency model, the Keplerian frequency model, the model of two jets in opposite directions, and the precession of the neutron star, but find that none of them can explain the origin of the QPO well. We conclude that the variability of non-thermal radiation may account for the mHz QPO, but further theoretical studies are needed to reveal the physical mechanism.Comment: 13 pages, 7 figures. Accepted for publication in MNRA

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443
    corecore